Occurrence of citizen complaints concerning drinking water: a case study in Quebec City

Pablo Montenegro, Manuel J. Rodriguez, Luis Miranda, Florent Joerin and François Proulx

Centre de Recherche en Aménagement et Développement, Université Laval, 1624 Pavillon Savard, Quebec City, Canada G1K-7P4
École supérieure d’Aménagement du territoire, Université Laval, 1624 Pavillon Savard, Quebec City, Canada, G1K-7P4 Tel.: +1 418 656-2131 ext. 8933 Fax: +1 418 656-2018 E-mail: manuel.rodriguez@esad.ulaval.ca
Department of Civil Engineering, McGill University, 817 Sherbrooke Street West Montreal, Quebec City, Canada, H3A 2K6
Service de l’environnement, Environmental Department, Municipality of Quebec, Quebec City, Canada G1N 3X6

ABSTRACT

Understanding complaints regarding tap water is a useful tool for improving management of water quality. This paper presents an analysis of the spatio-temporal occurrence of citizen complaints concerning drinking water in three distribution systems of Québec City (Canada). The study is based on an analysis of complaint data by census unit within the territory under study (spatial dimension) and by week over a period of three years (temporal dimension). Spatial and temporal complaint variability was associated through Poisson regression analysis to parameters of water quality (at the source and within the distribution system), meteorological factors and socio-economic characteristics of the population. The results show that variability of complaints is associated with distributed water quality. Modelling results highlighted the fact that the socio-economic portrait of the population has a great influence on the spatial distribution of complaints. Also, the study demonstrates that the temporal variability of complaint occurrence is affected by the variability of raw and distributed water quality. Recommendations are provided to enhance the analysis of drinking water complaints for future studies.

Keywords: complaints; drinking water; perception; spatial analysis; temporal analysis; water quality