
Chaire de recherche industrielle CRSNG Gestion et surveillance

de la qualité de l'eau potable

Enjeux et défis pour la production d'eau potable dans un contexte d'évolution du climat

Ianis Delpla

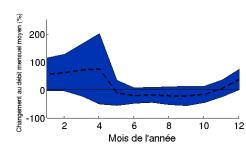
Conférences midi de la Chaire de Recherche CRSNG en eau potable 16/09/2020

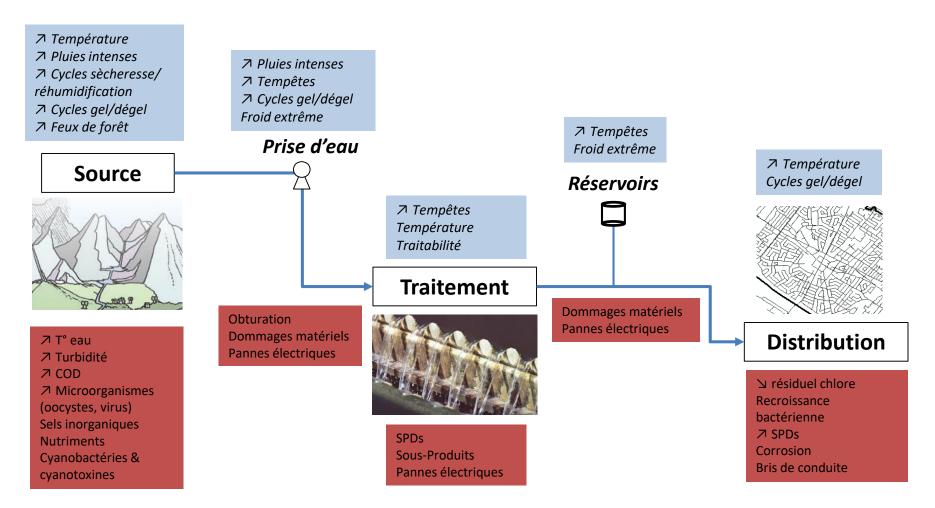
Changements climatiques - Tendances passées et futures

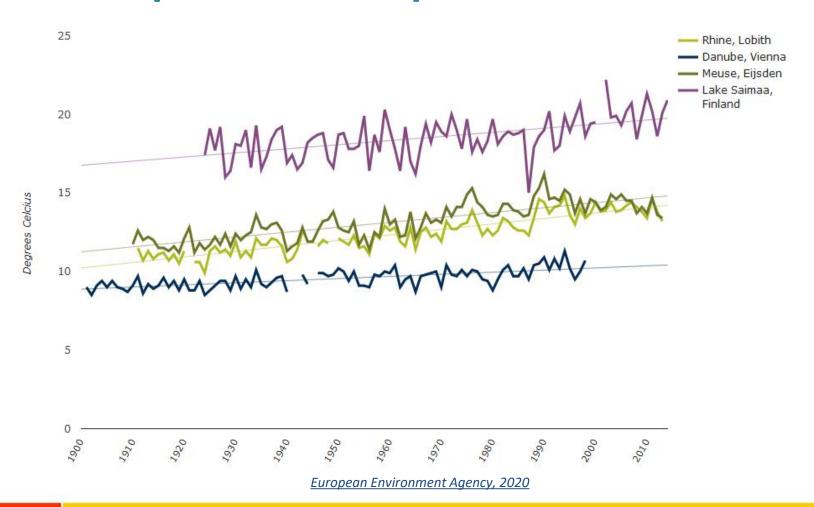
- Tendances passées au Québec [1]:

 - \nearrow précipitations annuelles et pluies extrêmes
 - ¬ cycles gel/dégel en hiver
 - • Sècheresses estivales
 - Variabilité: Juillet/Août 2018 ont été les mois consécutifs les plus chauds en 146 ans, et Octobre 2018 le mois le plus froid en 44 ans [2]

(Novembre 2019 : mois le plus froid en 83 ans)



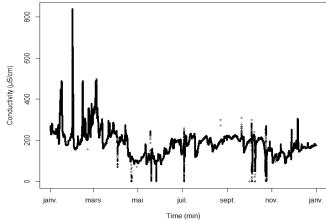

- → T air (moy. et max.) & évapotranspiration
- → pluies intenses
- ✓ cycles gel/dégel
- 7 fréquence et durée sècheresses (printemps, été), débits faibles inondations
- 7 feux forêts
- Hausse niveau de la mer



Impacts des CC sur la chaine d'approvisionnement en eau potable

L'exemple de la température de l'eau

Des ressources en eau sous influence


La combinaison de plusieurs évènements extrêmes peut être particulièrement difficile pour les systèmes de traitements d'EP:

- Cycles sécheresse-réhumidification : favorise décomposition et lessivage de la MO dans eaux de surface [1]
- Feux de forets et pluies : Hausses long terme MO, chlorophyll-a et phosphore [2]
- Cycles gel/dégel : hausse salinité eaux de surface
- Fortes pluies et augmentation des T°: blooms de cyanobactéries

Dépassement de seuil écologique (productivité forets et nitrification des sols)

→ Altération long terme

Vulnérabilité de l'approvisionnement en eau aux aléas climatiques : L'exemple de New York

- 9 millions d'habitants approvisionnés par de l'eau non filtrée
 - 4,5 milliards de L/jour
 - Une des plus importantes source d'eau potable non filtrée au monde
- Programme de protection des sources
- Hausse pluies intenses et turbidité, diminution niveaux eau été
- Coûts de construction et d'entretien d'une usine de filtration:
 - 8-10 milliards de \$ construction
 - 1 million/jour d'opération

Impacts potentiels – traitement eau potable (1)

1) Infrastructure:

Tempêtes, forts vents

- Pannes de courant et perturbations des systèmes de communication
- Dommages sur alimentation électrique et infrastructure communication
- Perturbation du fonctionnement des systèmes de pompage, traitement, réservoirs, communication et de surveillance

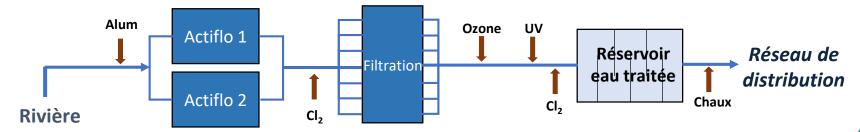
Froid extrême

Blocage des prises d'eau par la glace

Cycles gel/dégel

Obstruction des pompes par le frasil (Québec, Lévis,..)

Impacts potentiels – traitement eau potable (2)



2) Qualité de l'eau

- Impacts sur l'efficacité du traitement et sur qualité eau traitée (turbidité, matière organique, microorganismes)
 - Pluies
 - Chaleur et froid extrêmes

3) Coûts d'opération du traitement

- Produits chimiques (chlore, sels d'aluminium et de fer) : hausse de la demande et des doses
- Production de boues
- Encrassage et blocage des membranes, baisse de la durée de vie des filtres
- Redimensionnement des ouvrages, ajout de nouvelles étapes de traitement

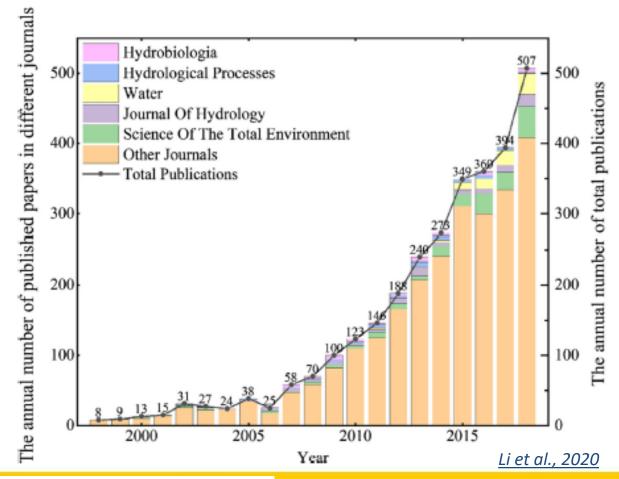
Impacts potentiels sur le réseau de distribution

1) Modifications de la qualité de l'eau potable

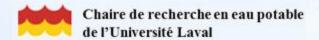
- Taux de consommation du chlore dans l'eau double pour une hausse de T° de 5°C [1]
- Modifications des patrons de désinfectant résiduel dans les systèmes de distribution : Risque de hausse des Sous-Produits de Désinfection (SPDs) et de recroissance bactérienne
- Respect de la réglementation
- Plaintes (goût, odeurs)

2) Infrastructures

- Impacts des évènements extrêmes (gel, inondation, sécheresse) sur les infrastructures de distribution : bris des conduites, dysfonctionnement des équipements de réseau (pompes de rechloration, par exemple)
- Modification de la qualité de l'eau peuvent impacter les infrastructures : Corrosion, entartrage


Risques pour la santé humaine

- Risques microbiologiques :
 - Majorité des épidémies hydriques aux USA (20ème siècle) ont eu lieu après des episodes de **fortes pluies** [1]
 - Etats Unis: Milwaukee, 1993: épidémie Cryptosporidium: 403 000 cas, 54 morts
 - Canada: Walkerton, 2000: épidémie E. Coli O157:H7, (4300 cas, 7 morts) [2];
 North Battleford (2001): épidémie Cryptosporidium (7000 cas)
 - Fortes et faibles précipitations sont liées à l'apparition d'épidémies de gastroentérites (Québec) [3]
 - 7 Température : Association entre épidémies cholera et El Niño [4]
- Risques chimiques [5]:
 - **SPD** : Cancers (vessie et colorectal), effets sur la reproduction (mortinatalité et retards de croissance)
 - Cyanotoxines : Cancer du foie, effets neurotoxiques, hépatites
- Populations vulnérables :
 - Jeunes enfants, personnes âgées, femmes enceintes, malades chroniques

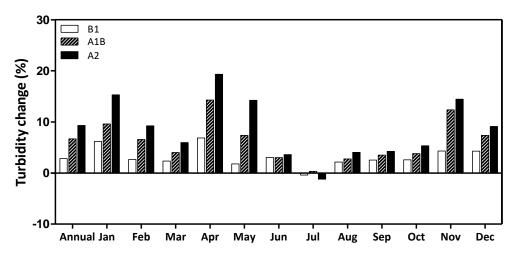

Un intérêt croissant pour la thématique CC et Qualité eau

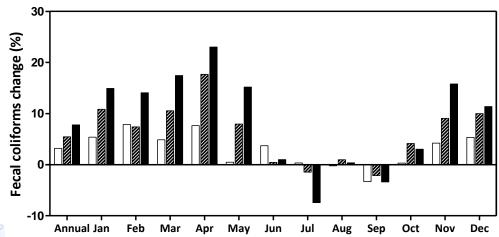
Comment qualifier et quantifier les impacts sur l'approvisionnement en eau potable ?

- Evaluation des tendances passées (20-30 ans) de variation de qualité de l'eau (Ex : T°eau)
- Méthode des analogues climatiques :
 - Temporels: Impact des évènements climatiques exceptionnels sur QE (canicules, crues) Influence de la saisonnalité (comparaison période sèche/période humide)
 - Spatiaux
- Modélisation quantitative (selon scénarios d'émissions)
- Modélisation qualitative (panels d'experts)

Etudes de cas

- Nombreux projets de recherche menés par la CREPUL
- Études de cas menées au Québec


- Campagnes d'échantillonnage
- Modélisation



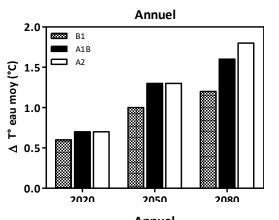
Etudes de cas : Impacts climatiques sur la qualité des sources d'eau (1)

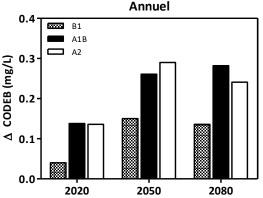
Turbidité et Coliformes Fécaux

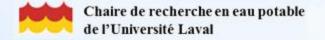
- 24 sources d'eau potable (Sud Québec)
- Hausse plus importante en avril
 - → Précipitations et
 → ruissellement
 - Réduction de la période de gel

Delpla et Rodriguez (2014)

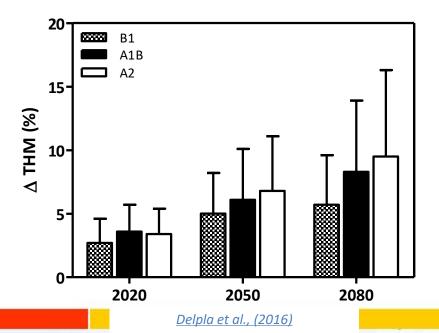
Etudes de cas : Impacts sur la qualité des sources d'eau (2)


Température de l'eau et Matière organique (Carbone **Organique Dissous**)


13 ressources en eau potable (Sud Québec)

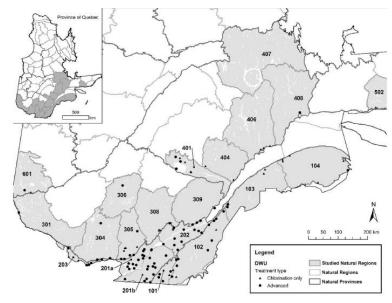

- Température de l'eau
 - Variation annuelle entre +0,6 et +1,8°C
 - Hausse pour toutes les saisons (surtout Été et Automne)

Carbone Organique Dissous



Étude de cas : sous-produits de désinfection

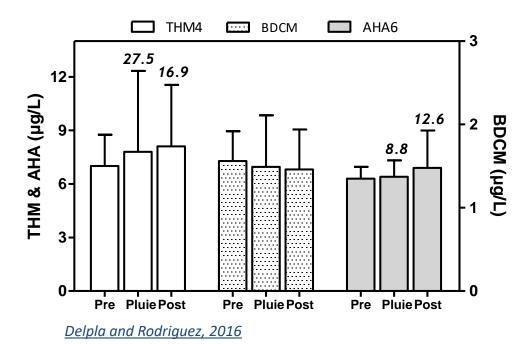
- THM: Effets cancérogènes suspectés
- 13 petites unités de traitement d'eau (Sud du Québec)
- 3 scenarios et 3 périodes
- Variations annuelles



- Augmentation pour tous les scénarios et périodes (+10% : A2 – 2080)
- Diminution de la période de gel et augmentation des pluies et de la température

Étude de cas : sous-produits de désinfection

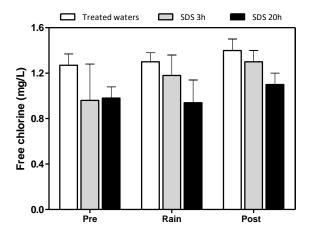
- 108 unités de traitement
- Probabilité (%) de dépasser la valeur de 80 μg/L
- Par saison et horizon temporel

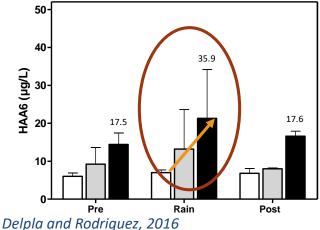


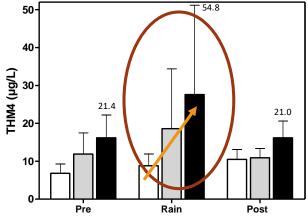
Cool et al., 2019

Time periods	Treatment type	Winter	Spring	Summer	Fall	Overall
Current	Cl ₂	17.3	29.5	60.3	43.9	38.3
	Advanced	3.4	9.7	32.5	18.5	16.4
2020	Cl ₂	19.4	31.0	62.3	44.9	40.0
	Advanced	4.0	10.5	34.0	19.2	17.4
2050	Cl ₂	21.7	33.5	65.4	46.8	42.4
	Advanced	4.7	11.7	36.7	20.4	18.8
2080	Cl ₂	23.1	35.3	68.3	48.8	44.4
	Advanced	5.2	12.6	39.3	21.8	20.2
Total Variation **	Cl_2	5.8	5.8	8.0	4.9	6.1
	Advanced	1.8	2.9	6.8	3.4	3.8

Sous-produits en temps de pluie (1)


Eaux traitées UTE Québec (4 campagnes de terrain)




- Pics mesurés en temps de pluie et postpluie
- → proportion THM et AHA bromés

Sous-produits en temps de pluie (2)

• Eaux traitées UTE Québec (4 campagnes de terrain) – Essais SDS

- Bonne efficacité du traitement en temps de pluie
- 7 réactivité et variabilité SPD pendant la période de pluie
- Cause possible:
 Modifications de la qualité
 et de la quantité de matière
 organique

Perspectives: nouveaux projets

Chaire de recherche industrielle CRSNG Gestion et surveillance de la qualité de l'eau potable

- Projet doctorat Cynthia Compaoré (2020-2023)
 - État des connaissances des opérateurs et gestionnaires sur l'influence des CC sur la production d'eau potable (Québec, France)
 - Analyse et proposition d'un système d'aide à la décision intégrant l'adaptation aux CC
- Projet doctorat Christian Ortiz (2020-2023)
 - Optimisation du traitement de l'eau potable en période de pluie (proposition d'un système d'aide à la décision)
 - Prévisions de la qualité de l'eau à la source (Lévis)

